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counts vT‘ = (1 - v z / ~ 2 ) 1 / 2 N  signals from the proper clock and v’T’ = (1 - v/c)N 
signals from the clock in S. The proper frequency is the same for both observers as 
the clocks are identical and in the same internal state; so l / v  can be used to define the 
unit of time by both of them. Obviously, the number of signals (or ticks) is not 
invariant. The  difference between the number of signals from the proper clock and 
from the unproper clock is equal to 

for the observer in S and to 

for the observer in S’.t All these results agree with the usual interpretation of the 
time dilatation. There is not a single argument against the time dilatation. 
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Time measurement : 
Criticism of a paper by L. M. Stephenson 

Abstract. A recent paper on time measurement by L. M. Stephenson is 
examined in detail. I t  is argued that the paper sheds no new light on the subject 
and that it is altogether misleading. In particular, while the notion of a primary 
time scale in special relativity bears some relation to certain elements that are 
familiar and valid, Stephenson’s own treatment of the notion appears to be 
wholly erroneous. 

i Both frames are treated on an equal footing but the equations are not completely sym- 
-+ -v ,  S -+ S’, S’ -+ S. To acquire complete symmetry the discussion should metrical to 

be repeated starting from the pair of events (x’ = 0, t’ = 0)  and (x’ = -vT’, t‘ = T’) in S’. 
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Introduction 
A recent paper on time measurement by Stephenson (1970) purports to disclose 

certain shortcomings in the standard interpretation of the theory of special relativity. 
He  claims to take account of features that have been overlooked by all other writers 
One’s attention has lately been called to this paper. Since it appears unfortunately to 
create much unnecessary confusion without supplying anything new whatsoever, one 
feels obliged to say so. Also, since Stephenson’s discussion is very involved-and, 
one is bound to say, obscure-one is driven to examine it in regrettable detail. 

Stephenson’s contentions 
There are three features of Stephenson’s paper that, at any rate when they are 

taken together, make it ostensibly different from most other criticisms of special 
relativity. 

(i) He  implicitly accepts special relativity as both selfconsistent and as applicable 
to the actual physical world; apparently he maintains simply that the application 
made by other writers to the treatment of time measurement is incorrect. 

(ii) He wishes to emphasize the property of a ‘complete clock’ of having two 
‘halves’, one that oscillates or ticks, and one that keeps count of the oscillations or 
ticks. 

(iii) He claims that special relativity predicts a ‘universal primary time scale’, by 
which he means, apparently, more than merely a scale, in fact a universal time as in 
classical physics. 

Special relativity 
In  special relativity, as in classical mechanics, an inertial system of reference 

consists of a frame, that may be regarded as an actual rigid body, and a system of time 
keeping. According to the postulates, one such inertial system exists; the frame may 
be graduated in a prescribed manner to give coordinates x, y, x; to each material 
point of the frame there is attached a clock; all such clocks are identical, in the sense 
of having been constructed in accordance with a common specification; each clock is 
‘complete’ in the sense of Stephenson (although he might say that a complete clock 
is not necessarily one of these standard clocks) ; all these clocks are synchronized by a 
specified procedure. These properties are not trivial but, as already stated, they follow 
from the postulates of the theory. It then further follows from these postulates that 
there exists a triple infinity of such inertial systems-all of the same status, each 
inertial frame being in uniform motion relative to any other, the motion of each being 
free and ‘non-rotating’-and all the clocks in all such systems are standard clocks. 

If E is any event and 9 is any inertial system, E occurs at a marked point P(x, y ,  z )  
in the inertial frame and at a time t by the standard clock fixed at P. Then E may 
be said to be the event (x, y ,  x, t). If 9’ is any other inertial system, then ‘coordinates’ 
x‘, y’, z’, t’ may be similarly defined so that E is also the event (x’, y’, z’, t’). For any 
pair 9, 9’ the transformation from (x, y ,  x ,  t )  to (x’, y’, z’, t’), or vice versa, is called 
a Lorentz transformation. For any particular pair, the frames may be chosen so that 
the transformation takes the familiar form which is evidently employed, in particular, 
by Stephenson. 

Time measurement 
Nearly all criticisms of special relativity with regard to time measurement (such 

as Stephenson’s) reduce to the comparison of two clocks alleged to ‘measure’ the time 
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interval between the same given pair of distinct events, E, F ,  say. Now a clock 
measures a time interval between the two events only if it is present a t  each of E, F. 
If the interval EF in 4-space is space-like or null, no clock can be present at both 
E, F. If EF is time-like, one and only clock %‘ fixed in an inertial frame is present at 
E, F ;  any number of other clocks can be present at E, F in this case, but if %‘* is 
any one of these then %‘* cannot move throughout with any single inertial frame. 
Consequently %‘, %‘* are not mutually symmetrical in their relation to E, F. So they 
measure different intervals between E, F ;  this is the usual so-called ‘clock paradox’. 
Stephenson may divide each of the clocks %, %* into as many ‘halves’ as he will, 
but he cannot alter this result as a consequence of special relativity. ilnd, as we have 
remarked, Stephenson apparently accepts this theory. 

We may remark that the particular clock %? measures the geodesic interval between 
E, F which, in the Minkowski geometry of special relativity is the longest-not the 
shortest-interval between two events. So %‘* measures a shorter time interval than %‘. 

If any other clock %+ is not present at both E and F it cannot be said to measure 
a time interval between E, F. Therefore, it is meaningless to assert that Vt gives a 
result that is discrepant or accordant with any other clock. 

Naturally, an observer attached to the clock Yt may observe the occurrence of 
the events E, F by means of light signals emitted at E, F. But he would obviously not 
call the time interval between his observations the time interval between E, F. For 
he would have to make allowance for the ‘times’ taken by the signals to reach %‘+ from 
E, F. However, when he has done this, according to some standard procedure, he has 
not measured an interval EF by any one particular clock. 

When it is stated as a consequence of special relativity that a moving clock appears 
to go ‘slow’, this is a loose statement of a very precise result. I t  is that any one 
particular clock %“ say, fixed in a frame in a system such as 9’ and reading time t’, 
moves past a succession of the synchronized standard clocks fixed in the frame in the 
system 9, and if when V‘ reads tl’, t2‘, it passes clocks in 9 reading t l ,  t2,  then 

t2’-tt,’ = (1-a2/c2)1 ’2( t2- t1) .  (1) 
This is a perfectly well-defined observable result, but it relates two readings of one 
clock to one reading of each of two other clocks. It is not the comparison of a moving 
clock with a stationary clock. 

Stephenson’s examples 
Stephenson’s first example is that of an observer 0 who is stationary in one 

inertial frame 9 say, and an observer A who moves past 0 with uniform velocity v 
along the x axis to a point distant Lo from 0 in frame 9; the motion of A is reversed 
at this point and A subsequently re-passes 0 with uniform velocity --U along Ox. 
As Stephenson says, this is an elementary example of the so-called clock paradox. 
But he claims that ‘the usual analysis does not relate to the reading of a compbte 
clock’. Stephenson supposes that the question of the acceleration concerned in 
reversing the motion of A is disposed of in the usual way, and he admits that this 
causes no difficulty. 

We continue to deal with standard clocks. When A’s clock is passing a clock fixed 
in 9 let t’, t be the readings of the two clocks, respectively. Let the clocks be adjusted 
so that t‘ = 0, t = 0 refer to the event of A first passing 0. Then equation (1) is 
equivalent to 

t’ = (1 - V Z / C 2 ) 1 ’ 2  t (2) 
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and this again gives the result expressed by saying that the moving clock appears to 
go slow. At A’s turn-round, t = L,/v and so t‘ = (1 -v2/c2)112 L&. A’s return 
journey can be treated similarly. Therefore when A re-passes 0, A’s clock reads 
T ,  and 0 ’ s  clock reads T,, say, where 

TI = 2(1 -U’/C’)~’’ L,/v, Tz = 2 L O / v .  (3)  
These are precisely the results S(3), S(5) .  ( I  refer to Stephenson’s $ 1 as S1, his 
equation (1) as S(l), and so on.) Stephenson describes T ,  in the same terms as we 
do. But he appears to describe T ,  in different terms; he says that 0 “ ‘observes’ that 
the total ‘time’ elapsed on A’s ‘clock‘ ” is Tl.  However, the whole point of the compar- 
ison is that T,  is the total time elapsed on A’s clock, and T,  the total time elapsed on 
0 ’ s  clock, between the two encounters, as observed by all observers. Stephenson seems 
to make a special point of the fact that two observers agree about the readings of a 
clock carried between two particular events, but this is entirely trivial. The  so-called 
clock paradox applies to a difference between the readings of two different clocks 
carried between the same two events, and the result is significant precisely because 
all observers agree about it. 

Incidentally, Stephenson’s own derivation of S(3), S(5 )  is not clear because, after 
taking other writers to task for not adequately defining their terms, he himself gives no 
definition at all of the quantities AT&, Ar0 that appear in his very first equation! 

What we have just said about the agreement between observers appears to be the 
only point brought out in Stephenson’s next calculation in S4.1. This is a roundabout 
way of calculating the number of periods of A’s clock observed by 0 to occur between 
the two encounters of 0, A previously considered. He  reckons this to yield the time 
T ,  in S(8). But, as we have remarked, this number of periods is trivially the same for 
all who observe it, and so naturally T1 = T,, as Stephenson verifies. 

Precisely the same comment applies to the result S(10) in Stephenson’s next 
example in S4.2, where an observer fixed in a different position in 9 is supposed to 
observe A’s clock. He then asserts that in the two examples S4.1, S4.2, 0 ’ s  clock will 
‘read’ a time T5 given by S(12). The case of S4.1 is the same as that yielding the 
time T,  and so, naturally, T,  = T,. The case S4.2 is not the same because the new 0 
no longer experiences the events concerned. But the new 0 is fixed in the same inertial 
frame as the old 0; so if the new 0 observes at time interval T ,  two events that occur 
at the old 0 at time interval T,, then again T,  = T5.  (Note that this is not the same 
as the case previously mentioned of the clock Vi and the events E, F. In  the case now 
considered, we have two observers that are given as being fixed in the same inertial 
frame and we have two events that occur at a single point in this frame. Obviously 
the time interval between observing the two events must be the same for these two 
observers.) Actually Stephenson himself is not explicit about the events that the 
new 0 is supposed to observe on his clock. 

In  S4.3 Stephenson writes: ‘As Tl = T3 = T4 the realizable experiment appro- 
priate to the usually quoted result corresponds to having the first half of an atomic 
clock in the moving frame of reference and the second half in the observer’s frame of 
reference’. I repeat that if A’s clock reads t’ = 0 at one event and t‘ = TI  at another 
event, then (trivially) all observers must agree that this is the case and so (trivially) 
T, = T ,  = T4; the ‘realizable experiment’ is for anyone to read the clock. 

Stephenson’s S5 appears to be mathematically wrong. He is dealing with observers 
0, A as in his first example; 0 reckons that A travels away from 0 with speed v to  
distance Lo and A then reverses. At the event of reversal, A’s clock reads 
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(1 - L&, as we have said. So A reckons that 0 has travelled away from A the 
distance (1 - u2/c2)1/2 Lo with speed v ,  not the distance L, in S( 14). This is a feature 
of the asymmetry between 0, A that shows the clock ‘paradox’ to be no paradox (see 
McCrea 1951, Crampin et al. 1959). 

Stephenson then states: ‘We may thus conclude that the reading of A’s clock 
read-out indicator, as observed by 0, will always be the same as the reading of the 
indicator of an identical clock situated in 0 ’ s  frame of reference’. This proposition 
is not valid by virtue of the work just preceding it because, as we have just seen, this 
work is incorrect. But anyhow, on account of its use of the phrase ‘always’, the 
proposition either has no physical significance or else it pre-supposes the existence of 
universal time, which it purports to establish. 

The  latter part of S5 (Stephenson 1970 p. 374) concludes with statements about 
‘the primary time scale, which directlygines the time elapse between events’ and which is 
‘affected by both the time and length transformations of special relativity’. Presumably 
he means by this that the effects of the two transformations cancel each other out, but 
as we have seen, this conclusion is based on his erroneous length transformation S( 14). 
He goes on to assert ‘any given complete clock will measure the same time elapse 
between two events in all inertial frames of reference’ ; I have already pointed out that 
a clock fixed in at most one inertial frame can be present at each of two events, 
and so the phrase ‘in all inertial frames of reference’ is inapplicable or irrelevant. 
Any number of other clocks not fixed in any one inertial frame may be present at the 
two events; the time elapse measured by any of these clocks will be, in general, 
different from that measured by any other. Stephenson says nothing that reveals any 
fallacy in this standard result of special relativity. 

Stephenson then has S6 on “The apparent ‘lifetime’ of p-mesons”. A conclusion 
does not emerge. But regarding ‘the average distance travelled by a p-meson, situated 
in frame A, as observed by a stationary observer 0’, he states: ‘The apparent path 
length travelled by p-mesons is thus increased by the factor of (1 - u ~ / c ~ ) - ~ / ~ . . .  ’. 
The only interpretation one can place upon the description is that A is the rest-frame 
of the meson and consequently that the path length in A is zero; so it is not evident 
what ‘apparent path length’ is increased. 

Thus it is seen that a patient examination of Stephenson’s paper detects no proof 
of any result at variance with standard special relativity theory. When Stephenson 
writes in S7 of ‘sources of error’ he appears to be referring to the need to distinguish 
between what an observer actually sees in a certain situation and what he finds when 
he ‘plots’ or ‘reduces’ his observations in a prescribed manner. But this is a distinction 
that is as old as physics itself. It is nothing peculiar to relativity theory, although 
serious writers on relativity are in fact specially careful about it-they have to be 
because the light-propagation involved in the ‘seeing’ is so basic to the whole subject. 

Primary time scale 
In spite of these strictures, it can be admitted that there are three valid general 

features of time measurement that Stephenson seeks to expose. These are (a)  the 
possibility of an agreed common time-keeping for all observers, (b) the possibility of 
setting this up while treating all inertial observers as being on the same footing, and 
(c) a possible ‘Machian’ element in time-keeping. In  discussing Stephenson’s paper it 
seems essential to try to elucidate these features. They are not new, and I believe 
Stephenson’s own arguments about them to be false and his implied criticisms of 
special relativity to be invalid. We consider the features in turn. 
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( U )  It is necessary to say a word about time-keeping in classical physics. The  
classical model of the physical world admits universal time in the following sense. 
We may suppose there are any number of identical clocks at every event. If E, F are 
any two events, then clocks may be transported from E to F and not from F to E, 
when F is said to be after E ,  or vice versa, when E is said to be after F, or neither, 
when E, F are said to be simultaneous. If clocks can be transported from E to F 
then, in whatever way this is done, they will all agree at F. If clocks can be transported 
from E to F and from F to G, then they can be transported from E to G. 

Special relativity physics denies the existence of universal time in this sense 
because it constructs a model of the physical world in which the setting up of such a 
time is operationally impossible. 

Now everyone knows that we can never claim that the actual physical world is 
bound to behave in accordance with any mathematical model. But we can, of course, 
know that the physical world does not behave in accordance with some given model. 
Most physicists are convinced that it does not behave in accordance with classical 
physics, in particular, with regard to universal time. This is because they understand 
that the postulated existence of the operational means of setting up universal time 
contradicts experience. This ‘operational’ approach to physics was that adopted by 
Einstein in formulating special relativity, and it is now, of course, familiar throughout 
physics; there can be no going back upon it. 

While there cannot be universal time in the classical sense, in any model physicists 
if they wish may set up a ‘primary time scale’ according to some agreed arbitrary 
convention, but one that is operationally realizable. 

In  the present communication we are concerned with the special relativity model. 
We have recalled how, in any inertial system 9, we postulate the existence of a stan- 
dard clock fixed at every point of the frame. Then in 9 every event E has in particular 
a coordinate t that has a precise operational meaning; it is the reading of the standard 
clock in 9 that is present at E. It does not matter what observer reads the clock. So 
all observers could agree to use this as their primary time scale. That is to say, of all 
the equivalent inertial systems, the observers could arbitrarily select one (9) and 
declare that the official time of any event E is to be the reading of the $-clock present 
at E. In  general, this would be a useless and inconvenient procedure! Also, of course, 
the selection of a different inertial system would give a different time that would be no 
better and no worse than the first. We simply have an illustration of the fact that 
special relativity does not prevent observers using a common time scale if they want 
to do so; they can call it their primary time scale, again if they want to do so. 

(b) It may next be asked whether special relativity admits any such time scale 
that gives no preference to any one inertial system. Now if a clock can be present at 
each of two events E, F we have seen that there is one and only one standard clock 
fixed in an inertial frame that is present at each. The  time elapse measured by this 
clock is, of course, a quantity r(E, F ) ,  say, about which all observers agree. If then E 
is some arbitrarily chosen particular event, and if we write r = r(E, F )  provided F is 
such that this (real) quantity exists, then r may be treated as providing a primary 
time scale for events like F. Actually, i- is real for any event F inside the null cone of E, 
and r may be taken positive if F is in the ‘forward’ half-cone and negative if F is in 
the ‘backward’ half-cone. 

If ( x , y ,  z, t )  are the coordinates of F in any inertial system 9 in which E has 
been chosen as origin, then 

CZ72 = C2t2 - x2 - y 2  - 2 2 .  
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Obviously this is an invariant for all systems 9, and the existence of T is trivial when 
looked at in this way. It was introduced as above, partly in order to show its operation- 
al character, and partly because it is seen to be apparently the nearest thing possible 
to Stephenson’s ‘primary time scale’. But it is now seen to be far more arbitrary than 
Stephenson implies. If we take any different particular event E’ as origin, we get a 
different time T’, and not every event that has a real T has a real T’, and vice versa. 

( c )  The Machian element is closely bound up with the notion of cosmic time and 
this we now briefly discuss. 

Cosmic time 
In  the standard development of special relativity there is no explicit mention of 

any general material contents of the model. If there are such contents, and if their 
behaviour is not wholly chaotic, and if we still work within the postulates af special 
relativity, then any event can be taken to be at the origin 0 of an inertial frame that is 
related in some special way to the material. For instance, 0 may be moving with, 
say, the mean motion of the material in its vicinity; or 0 may be moving so that, say, 
the resultant radial motion of remote material is zero. So in some such sense there 
may be a preferred inertial frame at each event. 

A particular case of this is the special relativity, or ‘Milne’, cosmological model. 
This is the case where the world-lines of all fundamental observers pass through a 
unique event E (the ‘big-bang’) and every observer sees the same picture as every 
other. In  this case, if E is chosen to be the particular event in the definition of the 
time T above, then T is the cosmic time of the model. (Kermack and McCrea 1933.) 

These considerations are mentioned here in order to show that it is only when we 
take explicit account of the material present that we may begin to single out a particu- 
lar preferred primary time scale. It may indeed be natural to do this, and this may 
be a clue to what Stephenson calls ‘Machian’ relativity at the end of his paper. 

However that may be, so far as the theory of special relativity itself is concerned, 
Stephenson’s work appears to be unfortunately and entirely misleading. 

Astronomy Centre, 
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Falmer, Brighton, 
BN19QH, 
England. 
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25th November 1970 
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Impact ionization of micro-particles at low velocities 

Abstract. Impact ionization of micrometre-size particles has been observed 
at velocities down to 60 m s -I, where the empirical law Q cc m a d  is shown to 
remain valid, the indices having the values tc = 1 and /3 = 3.4. 

The  impact of micrometre-size metallic particles on a molybdenum target has 
been shown to produce substantial ionization at velocities as low as 60 m s-l, and the 


